NATO MEASURES TO PREVENT TERRORISTS FROM ACQUIRING WEAPONS OF MASS DESTRUCTION (Resolution 70/36)

Executive Summary

Proliferation of WMD

- NATO Heads of State and Government have on numerous occasions called for universal adherence to, and compliance with, the NPT and the Additional Protocol to the IAEA Safeguard Agreement, as well as for full implementation of UNSCR 1540 and further work under UNSCR 1977. Reference is made to the Wales Summit Communique of 5 September 2014, paragraphs 75-78.

CBRN Defence Capabilities

- Within the NATO Response Force (NRF), the multinational Combined Joint CBRN Defence Task Force, including the CBRN Joint Assessment Team and the CBRN component of Very High Readiness Joint Task Force (VJTF), are the key assets to protect against, and respond to CBRN attack or event involving CBRN materials from state and non-state actors. This high-readiness force significantly adds to the specialised capabilities that the Alliance has to offer to Allies and Partners. The NATO Joint CBRN Defence Centre of Excellence (JCBRN Defence COE) and its CBRN Reachback Element is able to operate 24/7 and provides scientific and operational advice before, during and after CBRN incidents.
- NATO CBRN defence activities to protect against state and non-state actors threats are supported by the Committee on Proliferation in Defence format, the Joint CBRN Defence Capability Development Group (JCBRND-CDG), the CBRN Medical Working Group, the JCBRN Defence COE, the Defence Against Terrorism Programme of Work (DAT PoW) and CBRN defence experts within the NATO HQ (e.g., Weapons of Mass Destruction Non-Proliferation Centre) and throughout NATO’s Command and Forces Structure. The Framework Nations Concept Cluster on CBRN Protection approved HOSG in Wales Summit provides for additional capabilities.

Cooperation with Partners

- Through the Euro-Atlantic Partnership Council (EAPC), the Mediterranean Dialogue (MD), the Istanbul Cooperation Initiative (ICI), and with other partners across the globe, NATO has deepened cooperation and information sharing on WMD threats and strengthened non-proliferation initiatives.
- As one of NATO’s largest outreach activities, the Annual NATO Conference on WMD Arms Control, Disarmament and Non-Proliferation gathers decision-makers, senior officials and distinguished academics in the field of WMD and security from a wide range of countries. The last two event were held in Qatar in March 2015 and Slovenia in May 2016 and the next conference is planned in Finland in 2017.
Science Cooperation

- NATO’s Science for Peace and Security (SPS) Programme supports practical security-related civil science and technology collaboration between scientists and experts from NATO and partner countries. In particular, the SPS Programme directly facilitates mutually beneficial cooperation on issues of common interest, in particular international efforts to meet emerging security challenges, including counter-terrorism and defence against CBRN agents.

Additional Information for the website only

CBRN Defence Capabilities

NATO and NATO Allies have significantly improved and are further improving the Alliance’s CBRN defence capabilities, as discussed and addressed in the Committee on Proliferation in Defence format. One key focal point for CBRN Defence capability development in NATO is the Joint CBRN Defence Capability Development Group and its specialized panels, which support multinational cooperation and the delivery of NATO products on the entire range of CBRN Defence enabling components. Another important element in capability development is the NATO Joint CBRN Defence Centre of Excellence (JCBRN Defence COE). Within the NATO HQ, the Weapons of Mass Destruction Non-Proliferation Centre supports the work of NATO’s Committee on Proliferation in political-military and defence formats. Several Centres of Excellence capture WMD/CBRN threats and contribute to possible CBRN counter-measures. As part of NATO’s common funded Defence Against Terrorism Programme of Work (DAT PoW), a specific initiative called ‘Detecting, protecting against and defeating CBRN weapons’ implements a comprehensive work plan which includes exercises, training courses and the development of new technologies and capabilities to meet Alliance CBRN shortfalls. Ongoing projects include an annual exercise to train first responders and Sampling and Identification teams (SIBCRA), and further development of the NATO CBRN Reachback Capability at the JCBRN Defence COE, including through a CBRN knowledge database. Additional relevant projects refer to the development of an underwater maritime barrier for harbour protection, composed of multisensory underwater threat detection and deterrent systems. Completed projects include the development of a mobile isolation unit prototype, applicable for both civilian and military environments, which could be deployed as part of a military field hospital in the event of a bio-terrorist attack, to provide protection for troops and civilians in war or to ensure isolation of infected patients. The programme also supports synergies and information exchange between the counter Improvised Explosive Devices/ Explosive Ordnance Disposal communities and the CBRN community.

- Within the NATO Response Force (NRF), the multinational Combined Joint CBRN Defence Task Force, including the CBRN Joint Assessment Team, and the CBRN component of Very High Readiness Joint Task Force (VJTF), are the key assets to
protect against, and respond to CBRN attack or event involving CBRN materials. This high-readiness force, currently comprised of more than 20 national forces including Partners, regularly participates in NRF rotations and adds significantly to the specialised capabilities that the Alliance has to offer to Allies and partners. This force also serves as a catalyst for further transformation of our armed forces, not only for the benefit of NATO, but also for EU, UN or national purposes. The NATO JCBRN Defence COE and its CBRN Reachback Element is able to operate 24/7 and provides scientific and operational advice before, during and after CBRN incidents. The Framework Nations Concept Cluster on CBRN Protection approved HOSG in Wales Summit focuses on the joint development of forces and specialised CBRN capabilities to enhance CBRN protection of NATO troops in operations.

Science Cooperation

- The Science for Peace and Security (SPS) Programme supports multi-year research projects, collaborative workshops and advanced training courses in accordance with specific SPS key priorities in support of NATO’s strategic objectives. Counter-terrorism and CBRN defence are among these key priorities. Recent examples of such collaboration include the following:

- A multiyear project between the United States and Ukraine is focused on the development of new algorithms and instruments for radioactive materials detection in order to increase control of the radioactive materials storage and to prevent their illicit shipment. The research is motivated by the quest for reliable means for early detection of these threats.

- An Advanced Research Workshop on CBRN risks in land and maritime container transport took place in Rome in May 2016. The aim of this workshop was to set up a platform for the sharing of best practices in the field of border and port security, in particular in the context of moving containers at seaports and logistics centres which entails the risks of illicit trafficking as well as CBRN threats and malicious acts. Therefore, the focus of this effort is to improve container security in particular to prevent the transportation of CBRN materials and weapons that could be used in terrorist attacks.

- The purpose of an ongoing multiyear project implemented jointly by scientist from France, Ukraine and United States is to develop a new high sensitive detector for fast neutrons based on the measurement of inelastic scattering within scintillator detector materials that contain heavy atomic components. This approach offers the potential for greatly increased efficiency of detection in neutron detector systems that will be more compact than present systems. The Project will provide enhanced security by enabling the improved efficiency and sensitivity in the detection of fissionable nuclear materials to aid in the prevention of illegal transport of these materials.